skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Green, Aaron"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We propose a survival analysis approach for discovering and characterizing user behavior and risks for lending protocols in decentralized finance (DeFi). We demonstrate how to gather and prepare DeFi transaction data for survival analysis. We illustrate our approach using transactions in Aave, one of the largest lending protocols. We develop a DeFi survival analysis pipeline that first prepares transaction data for survival analysis through the selection of different index events (or transactions) and associated outcome events. Then we apply survival analysis statistical and visualization methods modified for competing risks when appropriate, such as Kaplan–Meier survival curves, cumulative incidence functions, Cox hazard regression, and Fine-Gray models for sub-distribution hazards to gain insights into usage patterns and risks within the protocol. We show how, by varying the index and outcome events as well as covariates, we can use DeFi survival analysis to answer questions like “How does loan size affect the repayment schedule of the loan?”; “How does loan size affect the likelihood that an account gets liquidated?”; “How does user behavior vary between Aave markets?”; “How has user behavior in Aave varied from quarter to quarter?” The proposed DeFi survival analysis can easily be generalized to other DeFi lending protocols. By defining appropriate index and outcome events, DeFi survival analysis can be applied to any cryptocurrency protocol with transactions. 
    more » « less
  2. The emerging decentralized financial ecosystem (DeFi) is comprised of numerous protocols, one type being lending protocols. People make transactions in lending protocols, each of which is attributed to a specific blockchain address which could represent an externally-owned account (EOA) or a smart contract. Using Aave, one of the largest lending protocols, we summarize the transactions made by each address in each quarter from January 1, 2021, through December 31, 2022. We cluster these quarterly summaries to identify and name common patterns of quarterly behavior in Aave. We then use these clusters to glean insights into the dominant behaviors in Aave. We show that there are three kinds of keepers, i.e., a specific type of users tasked with the protocol’s governance, but only one kind of keeper finds consistent success in making profits from liquidations. We identify the largest-scale accounts in Aave and the highest-risk kinds of behavior on the platform. Additionally, we use the temporal aspect of the clusters to track how common behaviors change through time and how usage has shifted in the wake of major events that impacted the crypto market, and we show that there seem to be problems with user retention in Aave as many of the addresses that perform transactions do not remain in the market for long. 
    more » « less
  3. Pardalos, Panos; Kotsireas, Ilias; Guo, Yike; Knottenbelt, William (Ed.)
    We propose a decentralized finance (DeFi) survival analysis approach for discovering and characterizing user behavior and risks in lending protocols. We demonstrate how to gather and prepare DeFi transaction data for survival analysis. We demonstrate our approach using transactions in AAVE, one of the largest lending protocols. We develop a DeFi survival analysis pipeline which first prepares transaction data for survival analysis through the selection of different index events (or transactions) and associated outcome events. Then we apply survival analysis statistical and visualization methods such as median survival times, Kaplan–Meier survival curves, and Cox hazard regression to gain insights into usage patterns and risks within the protocol. We show how by varying the index and outcome events, we can utilize DeFi survival analysis to answer three different questions. What do users do after a deposit? How long until borrows are first repaid or liquidated? How does coin type influence liquidation risk? The proposed DeFi survival analysis can easily be generalized to other DeFi lending protocols. By defining appropriate index and outcome events, DeFi survival analysis can be applied to any cryptocurrency protocol with transactions. 
    more » « less
  4. Many universities are offering data science (DS) courses to fulfill the growing demands for skilled DS practitioners. Assignments and projects are essential parts of the DS curriculum as they enable students to gain hands-on experience in real-world DS tasks. However, most current assignments and projects are lacking in at least one of two ways: 1) they do not comprehensively teach all the steps involved in the complete workflow of DS projects; 2) students work on separate problems individually or in small teams, limiting the scale and impact of their solutions. To overcome these limitations, we envision novel synergistic modular assignments where a large number of students work collectively on all the tasks required to develop a large-scale DS product. The resulting product can be continuously improved with students' contributions every semester. We report our experience with developing and deploying such an assignment in an Information Retrieval course. Through the assignment, students collectively developed a search engine for finding expert faculty specializing in a given field. This shows the utility of such assignments both for teaching useful DS skills and driving innovation and research. We share useful lessons for other instructors to adopt similar assignments for their DS courses. 
    more » « less
  5. Abstract Glycans are the major components of the cellular membranes and mediate many cellular processes via their interactions with lectins. A kinetic Monte Carlo (kMC) model was proposed previously to incorporate the key features of glycan‐lectin interactions such as multivalency and glycan diffusion, and its accuracy has been validated by experiments. However, computational cost of the kMC model is its major bottleneck. In this study, a hybrid model combining a partial differential equation (PDE) with the kMC model is proposed to greatly reduce the computational cost while preserving the accuracy. Specifically, glycan diffusion is simulated by the PDE for improving computational efficiency since the glycan diffusion execution through the kMC is computationally expensive. The hybrid PDE‐kMC model is employed to simulate the binding dynamics between cholera toxin subunit B and gangliosides on cellular membranes. The accuracy and efficiency of the proposed model was demonstrated by comparing with the sole kMC model. 
    more » « less